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ABSTRACT: The water resources of the western United States have enormous agricultural and municipal demands. At the
same time, droughts like the one enveloping the West in the summer of 2021 have disrupted supply of this strained and pre-
cious resource. Historically, seasonal forecasts of cool-season (November–March) precipitation from dynamical models such
as North American Multi-Model Ensemble (NMME) and the Seasonal Forecasting System 5 (SEAS5) from the European
Centre for Medium-RangeWeather Forecasts have lacked sufficient skill to aid inWestern stakeholders’ and water managers’
decision-making. Here, we propose a new empirical–statistical framework to improve cool-season precipitation forecasts
across the contiguous United States (CONUS). This newly developed framework is called the Statistical Climate Ensemble
Forecast (SCEF) model. The SCEF framework applies a principal component regression model to predictors and predictands
that have undergone dimensionality reduction, where the predictors are large-scale meteorological variables that have been
prefiltered in space. The forecasts of the SCEF model captures 12.0% of the total CONUS-wide standardized observed vari-
ance over the period 1982/83–2019/20, whereas NMME captures 7.2%. Over the more recent period 2000/01–2019/20, the
SCEF, NMME, and SEAS5 models respectively capture 11.8%, 4.0%, and 4.1% of the total CONUS-wide standardized
observed variance. An important finding is that much of the improved skill in the SCEF, with respect to models such as
NMME and SEAS5, can be attributed to better forecasts across most of the western United States.
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1. Introduction

Widespread international collaboration and model-
development efforts have noticeably improved precipitation
forecasts at lead times of days to weeks (Brunet et al. 2010;
Doblas-Reyes et al. 2013; Alley et al. 2019; Benjamin et al.
2019). Bauer et al. (2015) termed this advancement as the
“quiet revolution in weather forecasting.” Despite the gains
observed in short-term weather forecasts, broadscale skillful
numerical seasonal forecasts remain elusive. The El Niño–
Southern Oscillation (ENSO) is the dominant driver of large-
scale teleconnections and predictability on the global scale
(Ropelewski and Halpert 1987; Redmond and Koch 1991;
Cayan et al. 1999; Power et al. 2013; Capotondi et al. 2015;
Hoell et al. 2016; Guo et al. 2017; Kumar and Chen 2017;
Nigam and Sengupta 2021). ENSO teleconnective patterns
can persist for months, and as a result, can modulate precipita-
tion with ENSO phase and provide some seasonal forecast
skill relative to its unconditional distribution (Quan et al.
2006; Manzanas et al. 2014).

Over the last decade, substantial resources have been put
into ensemble seasonal prediction systems such as North
American Multi-Model Ensemble (NMME) (Kirtman et al.
2014b) and the Seasonal Forecasting System 5 (SEAS5)

model from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Johnson et al. 2019b). These dynamical
models have demonstrated skillful forecasts across regions of the
contiguous United States (CONUS) where concurrent ENSO
teleconnections are strongest (Becker et al. 2014; Gubler et al.
2020; Roy et al. 2020). Despite the success of these dynamical
models in forecasting precipitation in those regions, they often
fail to provide skill in the most water-critical regions such as the
western United States.

Across the western United States, the cool season has a
profound impact on water resources (Udall and Overpeck
2018; Hao et al. 2018; Broxton et al. 2019). The cool season,
which in this paper we define between the months of
November and March, is the primary snow accumulation
period across the mountainous West. Snow accumulation in
the cool season can then be used to provide more accurate
estimates of streamflow and water resources for the spring
and summer seasons.

Building on existing ENSO teleconnections, Switanek et al.
(2020) showed a robust statistical relationship between ENSO
and cool-season precipitation at surprisingly long lead times
across much of the western United States. For some regions
such as northern California through the American Rocky
Mountains, this statistical relationship was found to be great-
est at lead/lagged (ENSO/precipitation) times of greater than
1 year. The authors subsequently built a simple statistical
forecast model [the combined lead sea surface temperature
(CLSST) model] that exploits the statistical teleconnections
between ENSO and precipitation, at multiple lead times of up
to 18 months, using the Niño-3.4 sea surface temperature
(SST) time series as a sole predictor. The CLSST statistical
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model from Switanek et al. (2020) was shown to provide mod-
erately more skillful forecasts across CONUS than either
NMME or ECMWF’s SEAS5 model. Importantly, the CLSST
model was shown to substantially improve the forecast skill
across much of the West.

In this paper, we extend the work of Switanek et al. (2020)
and develop a purely statistical modeling framework to fur-
ther improve CONUS precipitation forecasts for the cool sea-
son November–March. The modeling framework applies a
principal component regression (PCR) model to predictors
and predictands that have undergone dimensionality reduc-
tion, where the predictors are large-scale meteorological
variables that have been prefiltered in space. The forecast
product that we develop herein can be used directly, or as
a reference standard for other dynamically based forecast
systems.

2. Data

Accumulated monthly precipitation was obtained from
PRISM Climate Group (2021). These data were first upscaled
from their native 1/248 degree resolution to 1=88 using arith-
metic averaging. Next, we summed precipitation at each 1=88

grid cell over the November–March cool season. Then, we
calculated areal averages for the 204 division-4 hydrologic
unit codes (HUC) across CONUS (Seaber et al. 1987). HUCs
use six levels of spatial hierarchy to parse watersheds, repre-
sented by numeric codes 2–12 (where divisions 2 and 12 delin-
eate the most coarse-scale and the most fine-scale resolutions,
respectively). Given our own discussions with water managers
across the western United States and the general lack of spa-
tial and temporal precision of seasonal forecasts, we have
deemed precipitation cool-season forecasts at the division-4
HUC resolution as most appropriate and useful for many
large-scale decisions that concern water resources. Hence-
forth, we use HUC to refer to this division-4 level of spatial
resolution (refer to Fig. 2, for example, to observe the
division-4 HUCs across CONUS).

Sea surface temperature (SST) time series were computed
using the NOAA Extended Reconstructed Sea Surface Tem-
perature (ERSST), version 5 (Huang et al. 2020). The SST
dataset contains monthly averages at a 28 resolution. We used
this dataset to subsequently calculate the monthly Niño-3.4
(58N–58S, 1708–1208W) time series.

Sea level pressure (SLP), in addition to zonal and meridio-
nal wind speeds (UWND and VWND, respectively), were
extracted from the NCEP–NCAR reanalysis dataset at differ-
ent pressure heights (Kalnay et al. 1996). We obtained global
fields of SLP, UWND, and VWND at a temporal resolution
of 2.58.

Historical reforecasts of ensemble mean precipitation were
obtained for NMME (Kirtman et al. 2014b,a) in addition to
the more recent years of real-time forecasts (Kirtman et al.
2014c). The reforecast data and the real-time forecasts corre-
spond to 1982–2010 and 2011–20, respectively. These refore-
casts and the real-time forecasts were obtained for the
individual months using an October initialization date. We
then calculated precipitation sums for the November–March

cool season and spatially averaged the forecasts across each
HUC. To be consistent with the procedure, we used to obtain
observed cool-season precipitation at each HUC, the NMME
ensemble mean values were regridded to 1=88, prior to averag-
ing, where the 64 finer-resolution grid cell anomaly values are
simply equal to that of the containing 18 value. Then, spatially
averaged precipitation amounts were calculated at each HUC
as the average of the 1=88 precipitation amounts that were con-
tained by each respective HUC shapefile.

Seasonal forecasts from ECMWF’s long-range SEAS5
model were obtained for the years 1993–2020 (Johnson et al.
2019b,a). Ensemble monthly averages for the individual
months between November–March were computed where the
model was initialized in October, then summed over the cold
season. As with NMME, the data were regridded to 1=88 and
averaged across the individual HUCs.

3. Validation and skill metrics

In this study, we make forecasts using two different cross-
validation approaches. With the first, we use a split-sample
test case where only the data up through and including 1999/
2000 are used in calibration, and we predict and validate
model performance over the 20 cool seasons in the period
2000/01–2019/20. In the second test, we perform a 10-fold
cross validation. We subsequently compare our cool-season
forecasts with those made by the NMME and ECMWF-
SEAS5 models.

The performances of the forecasts are evaluated using
anomaly correlation and root-mean-square error (RMSE)
[Eqs. (8.68) and (8.30), respectively, from Wilks (2006)]. We
use throughout the paper the terms CONUS-average and
CONUS-wide anomaly correlation or RMSE. CONUS-average
anomaly correlation (or RMSE) is the result of first calculat-
ing the anomaly correlation for each of the 204 HUCs, then
averaging these anomaly correlations across all 204 HUCs. In
contrast, CONUS-wide anomaly correlation first standardizes
the forecasts and observations, then calculates one anomaly
correlation value (or RMSE) between the entire set of our
forecasts and observations. For example, if we are forecasting
the 20 cool seasons over the period, 2000/01–2019/20, for the
204 HUCs, we have 4080 (i.e., 20 3 204) samples that are
used to calculate our CONUS-wide anomaly correlation.

4. Methods

Similar to other ensemble predictions, such as NMME, we
developed a modeling framework that uses an ensemble of
models. In contrast to the dynamical models of NMME or the
ECMWF-SEAS5, however, we have developed a set of statis-
tical models. The forecasts we produce ultimately result from
a weighted mean of four different purely statistical models.
Our proposed modeling framework outlines the methods used
to develop and combine these statistical models. We term this
modeling framework the Statistical Climate Ensemble
Forecast (SCEF) system or the SCEF model. In this paper,
we focus on the development and the application of the SCEF
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model to make cool-season (November–March) forecasts of
precipitation.

a. The SCEF model

The SCEF modeling framework is a three-step process.
First, the user develops a set of potentially skillful statistical
forecast models, in our case using filtered data from key pre-
dictors such as SST, sea level pressure, u-component wind,
and y-component wind. Second, each individual statistical
model is optimized over the calibration period. Last, the
individual model forecasts are merged or combined into a
weighted ensemble mean. The SCEF model was implemented
using PCR and partial least squares regression (PLSR, similar
to canonical correlation analysis (Wilks 2006, chapter 12). We
will show in section 5 that both of these methods produce sim-
ilar levels of skill.

b. Prescreening the SCEF

We began by exploring a range of potential predictors.
Switanek et al. (2020) showed that a simple statistical fore-
cast model that employs the Niño-3.4 index as a sole predic-
tor, at multiple lead times, provides moderately more skillful
forecasts than either the NMME or ECMWF’s SEAS5
model over much of the United States. That model, which is
called the CLSST model, and is one of the statistical models
that we use in the SCEF. Additionally, we explored poten-
tial predictor variables that were taken from the NCEP–
NCAR reanalysis dataset. We compared the skillfulness of
different potential predictors using leave-one-out cross vali-
dation in the calibration period. Through this approach, we
selected three additional predictors to be used in the SCEF;
these were sea level pressure (SLP) and zonal and meridional
winds (UWND and VWND) at a pressure level of 850 hPa.
These four statistical forecast models (i.e., CLSST, SLP,
UWND, and VWND) together compose our SCEF model-
ing framework.

During our exploratory analysis, we observed that averages
of August–September values of SLP, UWND, and VWND
provided better forecasts in our calibration period than using
September alone. Additionally, we found better skill in our
calibration period by upscaling the resolution of our SLP,
UWND, and VWND data from 2.58 latitude by 2.58 longitude
to 5.08 latitude by 7.58 longitude. This upscaling was per-
formed using arithmetic averaging, and it removes a level of
variability at the smallest scales, which we expect are not pre-
dictable at seasonal time scales anyway.

c. PCR implementation of the SCEF

The CLSST is used very similarly to how it is outlined in
Switanek et al. (2020). Here, we provide a very brief overview
of the CLSST model. However, for more details, please refer
to Switanek et al. (2020). The CLSST model uses the Niño-3.4
index as a predictor at different lead times between 1 and
18 months prior. For each preceding month, m ∈ (1, …, 18), a
multiple linear regression model is fit between that month’s
Niño-3.4 SST value and the number of leading principal com-
ponents of precipitation that we are trying to predict. This

model fit is performed during the calibration period, and then
the fitted model is used to make forecasts for both the calibra-
tion and validation periods. The forecasts in the validation
period, at each HUC, are then the weighted mean of the fore-
casts from these preceding 18 months as a function of their
skill in the calibration period. We had experimented with
using fields of SSTs as predictors, in place of solely using the
Niño-3.4 predictor time series. However, that approach did
not yield better forecasts than the CLSST model. Here we
make a few small modifications to the default implementation
of CLSST:

1) We use the respective calibration periods for our two
cross-validated cases. This is in contrast to the 1901/
02–1980/81 period used in the Switanek et al. (2020)
study.

2) The forecasts of each of the preceding 18 months, at each
HUC, are weighted by historical skill (i.e., skill in the cali-
bration period) alone and not with an additional linearly
decaying weighted function. Adding the linearly decaying
weighted function was found not to improve the CONUS-
wide forecast skill during the calibration period. There-
fore, we have opted to reduce model complexity and
weight the CLSST forecasts by historical skill alone.

3) The leading five principal components (PCs) of precipita-
tion are being predicted, in contrast to the leading three.
This is to be consistent with the number of principal com-
ponents we found to be optimal for the SLP, UWND, and
VWND statistical models. The leading PCs, in our case,
find the spatial patterns (eigenvectors) of precipitation
across all HUCs that produce the greatest variability with
respect to time.

Next, the three different statistical models (SLP, UWND,
and VWND) are independently calibrated. We started by
treating four adjustable parameters as ones that could poten-
tially be optimized through calibration. These are 1) the
northernmost latitude of our predictor field, 2) the southern-
most latitude of our predictor field, 3) the number of predic-
tor PCs to use in our multiple linear regression model, and
4) the number of predictand PCs to use in our multiple linear
regression model. In an effort to reduce the number of param-
eters that we optimize, we fixed parameter 4 (the number of
leading predictand PCs) to five, since that number consis-
tently produced better results than other numbers of PCs. As
a result, we now have the other three parameters that require
optimization. The prespecified values for these three parame-
ters, along with their associated ranges, are shown in Table 1.
To find the optimal parameter combination in the calibration
period, we iterate over the range of possible values, which in
our case was 4, 5, and 25, respectively. We decided at the start
that we would include all longitudinal data in our predictor
fields. Therefore, we have not included any additional param-
eters governing the east–west boundaries of our predictor
field.

We begin with our predictor matrix X, whose columns are
samples in time and rows are grid points (X matrix has
39 rows by a variable number of columns), and our predictand
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matrix Y, whose columns are samples in time and rows are
HUCs (the Y matrix is 72 3 204). Matrix X is a subset of the
global field of August–September data (SLP, UWND, or
VWND), where parameters 1 and 2 control the latitudinal
bounds from which we constrain the predictor field. Matrix
Y contains our November–March precipitation amounts in
the 204 HUC basins. Prior to performing any calibration, we
first remove the mean from Y with

Yj 5 Yraw
j 2 1 ⊗ y j, (1)

where Yj contains our precipitation anomalies at HUC j, Yraw
j

are our raw precipitation amounts, and ⊗ is the vector outer
product between 1, which is a 723 1 column vector of \numeral
ones, and y j, which is a 13 204 row vector containing our mean
precipitation amounts with respect to our calibration period
(e.g., 1948/49–1999/2000 when using the split-sample test case).
For our predictors, we remove any existing historical trends,

~xi 5 xrawi 2 xtrendi , (2)

where x̃ i and xrawi are respectively our detrended and raw
time series of predictor values (SLP, UWND, or VWND) at
grid cell i and xtrendi is the least squares trend line fitted with
respect to the period of calibration. Next, the predictor data
are weighted by latitude,

Xi 5 X̃ iD, (3)

where D is a diagonal matrix with the diagonal elements filled
with cos(fi) and f is the latitude of grid cell i. Then, X is
decomposed over the calibration period, using singular value
decomposition with the Python package “numpy,”

X 5 U1S1V1, (4)

where S1 is the diagonal matrix containing the singular values
of X and U1 and V1 are the left-singular and right-singular
vectors, respectively. Similarly, decompose Y over the calibra-
tion period such that

Y 5 U2S2V2, (5)

where S2 is the diagonal matrix containing the singular values of
Y and U2 and V2 are the left-singular and right-singular vectors,
respectively. Next, we calculate our principal components of X,

XPCS 5 XVT
1 , (6)

where VT
1 is the transpose of V1, and, similarly, we calculate

our PCs of Y,

YPCS 5 YVT
2 : (7)

Thus, we can now define our PCR model as a multiple
linear regression,

yPCSk 5 XPCSp3b 1 b0, (8)

where yPCSk is our leading principal component k of our pre-
cipitation, where k ∈ (1, … , 5), XPCSp3 is our matrix of leading
principal components of X using the leading PCs specified by
parameter 3, where p3 ∈ (1, … , 25), and b and b0 respectively
contain the regression coefficients and intercept obtained
through a least squares fit. The calibration period is used to fit
the regression coefficients of Eq. (8). Last, we back-transform
the data from PC space to precipitation anomaly space at
each of the HUCs. This is done with

Yfcst 5 YPCSṼ2, (9)

where Yfcst are the forecast precipitation anomalies for the
HUCs across CONUS, YPCS are our leading five forecast PCs,
and ~V2 are the leading five eigenvectors from our decomposi-
tion in Eq. (5).

Our goal, at this point, is to establish for each of the three
models (i.e., SLP, UWND, and VWND) which sets of param-
eters yield the best CONUS-average anomaly correlation
forecast skill in our calibration period. Therefore, we use
observed precipitation anomalies Y and forecast precipitation
anomalies Yfcst to calculate the anomaly correlations of each
parameter combination at each HUC. These values are calcu-
lated over the calibration period. Then, CONUS-average
anomaly correlations, for a specified parameter combination,
are calculated as

rp1;p2;p3 5
1
n

∑204
j51

rj,p1;p2;p3, (10)

where rp1,p2,p3 is our CONUS-average anomaly correlation at
HUC j, and p1, p2, and p3 are our three parameters (refer to
Table 1).

Next, we want to find which parameter sets are optimal in
producing the most skillful out-of-sample forecasts. There-
fore, in addition to the cross-validated cases that we have
already outlined, we also implement leave-one-out cross valida-
tion over the calibration period itself. Here, we outline an exam-
ple implementation of the SLP model with the split-sample case:

1) Prior to computation of Eq. (1), we choose values for
parameters 1 and 2. In the first iteration, we use the
northernmost latitude of each of these (i.e., 87.58 and
12.58N, respectively). Then, the global field of SLP data is
constrained by our chosen latitudinal bounds.

2) We specify the value of parameter 3, which controls the
number of leading PCs to use from our predictor matrix.
In our initial iteration, only the first leading PC is used.

3) We proceed with Eqs. (1)–(7).
4) we use Eqs. (8) and (9) with leave-one-out cross valida-

tion to forecast the years in the calibration period. For

TABLE 1. The values and possible integer ranges of the three
model parameters.

Parameter Values Range

Northern lat 87.58N, 82.58N, 77.58N, and 72.58N 4
Southern lat 12.58N, 7.58N, 2.58N, 2.58S, and 7.58S 5
Predictor PCs 1, 2, 3, … , 25 25
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example, data from 1949/50–1999/2000 are used to fit the
model in Eq. (8), and we use Eq. (9) to make retrospec-
tive forecasts for the HUCs in the season November–
March 1948/49. Next, the season 1949/50 is left out and
the other 51 calibration years are used to forecast that
season. Then, we proceed in the same manner until all of
the calibration years have been reforecast. Last, we fit the
model in Eq. (8) to the entire calibration period (all
52 years), and use Eq. (9) to make forecasts for the years
2000/01–2019/20.

These steps are repeated until we have iterated over all possible
combinations of our three parameters (43 53 255 500 possi-
ble scenarios). Equation (10) is then used to find the best-
performing parameter combination, that is, the parameters that
produced the greatest cross-validated skill in our calibration
period. This process is performed independently for each of the
three SLP, UWND, and VWND statistical models.

At this point, we have produced four sets of forecasts.
These are the CLSST model forecasts and the forecasts result-
ing from our optimized ensemble mean PCR forecasts using
the SLP, UWND, and VWND fields. Last, we obtain the
weighted ensemble-mean forecasts as

Yfcst
j 5

Yfcst
1j w1j 1 Yfcst

2j w2j 1 Yfcst
3j w3j 1 Yfcst

4j w4j

w1j 1 w2j 1 w3j 1 w4j
, (11)

where our weighted ensemble-mean forecasts Yfcst at HUC
j are composed of the forecasts of the CLSST model Y1jfcst,

the SLP model Yfcst
2j , the UWND model Yfcst

3j , and the VWND

model Yfcst
4,j , and w1j, w2j, w3j, and w4j are the weights of those

models, respectively. Prior to Eq. (11), the forecasts of ,Yfcst
1 ,

Yfcst
2 , Yfcst

3 , and Yfcst
4 , were each independently standardized for

each HUC over the calibration period (e.g., 1948/49–1999/
2000 using the split-sample case). The weights are defined as

w1j 5
r1j 1 1

2

( )2
, w2j 5

r2j 1 1
2

( )2
, w3j 5

r3j 1 1
2

( )2
, and

w4j 5
r4j 1 1

2

( )2
, (12)

where r1j, r2j, r3j, and r4j are the anomaly correlations of our
four statistical models calculated over the calibration period
for HUC, j. Through calculating the Akaike information crite-
rion (Akaike 1974), we were able to confirm that the skill
improvement using all four predictor models was better than
any individual model or model combination.

In addition to the split-sample case, which we have used to
outline the methods above, we also performed a 10-fold cross-
validated test. In the 10-fold case, for each fold we leave out
four consecutive years for a total of 10 different partitions.
This was done over the 40-yr period 1980/81–2019/20. For
example, we initially left out 1980/81–1983/84 and used 1948/
49–1979/80 and 1984/85–2019/20 to fit the SLP, UWND, and
VWND models and make forecasts for those four years.
Next, we did the same with 1984/85–1987/88, and so on. Oth-
erwise, the model fitting and forecasting procedure is the

same as outlined for the split-sample test. However, in con-
trast to the split-sample test, the standardization of the fore-
casts Y1, Y2, Y3, and Y4, for all HUCs, is performed over the
period 1948/49–1979/80.

d. PLSR implementation of the SCEF

PLSR has a potential advantage over PCR, insofar that
PLSR can find statistical relationships between transformed
predictors and predictands where the transformed predictors
may explain a low amount of variance. Using PLSR allows us
to check for 1) How effectively can a method such as PLSR
sift through the data and pull out relevant predictors without
any prescreening? and 2) Do we gain anything by allowing
predictor projections that potentially explain less variance
than through a method such as PCR? We implement PLSR
using the Python package scikit-learn. For a detailed explana-
tion of PLSR, please refer to Wold et al. (2001).

Initially, we simply calculated the skill of the PLSR
weighted ensemble-mean forecasts using only the August–
September average SLP, UWND, and VWND data. We leave
out the CLSST model, since the CLSST model forecasts
remain constant, and therefore, the difference lies in the PCR
or PLSR implementation of the other three statistical models.
This initial baseline forecast was performed using our split-
sample test with the default number of components (i.e., two
components) in the PLS regression. The predictor data were
the entire grid of global SLP, UWND, and VWND at the
same 5.08 latitude by 7.58 longitude resolution.

Next, we added complexity to the PLSR model by fitting
the same three parameters that we fit with PCR.

5. Results

In Fig. 1, we show the sensitivity of our three model param-
eters for each of the individual statistical models composing
the SCEF (PCR) framework. This is shown for the split-sample
cross-validation case. One can observe that the models are
most sensitive to the number of predictor PCs, where using
only the first few predictor PCs (left sides of the individual
subplots) yields much less skill. The models can be seen to
exhibit less sensitivity to the parameters controlling the north-
ernmost and southernmost latitudinal bounds. The best-
performing combination of model parameters are enclosed by
the green boxes in Fig. 1, where these are the top performing
parameter sets as calculated using the calibration data. It is
also evident for both the UWND and VWND models that the
parameters reach saturation at the upper limits of our prespe-
cified boundary ranges. This appears to indicate that using
larger ranges for our parameters could yield better perfor-
mance. However, we did not want to influence the perfor-
mance of our model by how skillful we found it to be during
validation. Therefore, we stick with our original prespecified
parameter ranges that were chosen prior to model implemen-
tation. By this same argument, we initially chose to use all lon-
gitudes for our predictors, and therefore, we did not test the
effectiveness of having additional parameters that govern the
longitudinal extent.
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The anomaly correlation forecast skill over the last 20 years
for NMME, ECMWF-SEAS5, and the SCEF models can be
seen in Fig. 2. The optimized PCR and the PLSR imple-
mentations of the SCEF model, using the split-sample cross-
validated case, both clearly outperform NMME and
ECMWF-SEAS5 over the period 2000/01–2019/20. The
CONUS-average anomaly correlation for the SCEF model is
nearly double that of NMME and ECMWF-SEAS5. After
accounting for field significance (Benjamini and Hochberg
1995; Wilks 2016), we found 10% of the 204 CONUS HUCs
to have statistically significant forecast skill for NMME, 10%
for ECMWF-SEAS5, 58% for SCEF (PCR), and 61% for

SCEF (PLSR) [using two-tailed p values along with a false
discovery rate, aFDR, of 0.10; please refer to Wilks (2016) for
details]. More specifically, the SCEF model has a more dra-
matic improvement in forecast skill across the western United
States. Our approach to establish statistical significance, which
is nicely covered in Wilks (2016), can be thought of as being
similar to comparing the p value at each basin with a refer-
ence p value such as 0.05, except that it additionally accounts
for field significance. Furthermore, we did not find temporal
autocorrelation of the observed and forecast time series to be
statistically significant, and therefore, our test for statistical
significance does not account for temporal dependence.

FIG. 1. Anomaly correlations skill scores for the different parameter combinations for the (a) SLP, (b) UWND, and (c) VWND statisti-
cal PCR models. These are anomaly correlations calculated from the calibration period, using the split-sample case, for each parameter
combination. The x axis shows the sensitivity of the individual models to using different numbers of predictor PCs in our PCR model.
Each panel from top to bottom illustrates the sensitivity of the model to using different northernmost latitudes. The y axis illustrates the
sensitivity of the model to using different southernmost latitudes. The best-performing combinations of model parameters are enclosed by
the green boxes.

FIG. 2. Anomaly correlation skill of the split validation forecasts for the period 2000/01–2019/20. Statistically
significant basins, or HUCs, are outlined by the light-yellow lines.
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In the previous section, we discussed that one of the first
things we did was to observe how well a baseline PLSR model
performed. This is an implementation of the PLSR model
using SLP, UWND, and VWND data with no preprocessing
(i.e., we are not controlling the regional limits of our predic-
tors, and we simply use the default number of components,
which was two). Under that set of conditions, and predicting
the last 20 years using the split-sample case, the forecasts had
a CONUS-average correlation of 0.230. That CONUS-average
anomaly correlation is substantially less than what we achieve
by fitting our three parameters across these three statistical
models in the PCR framework, which is 0.370.

Through fitting the same three parameters discussed in
section 4, however, the PLSR implementation of the SCEF
model is able to achieve similar performance to that of the
PCR implementation. This is true for our chosen skill metrics
and cross-validation schemes. Ultimately, the PCR implemen-
tation was found to perform modestly better, and as a result,
we focus the duration of the paper on showing the SCEF
model forecasts and associated forecast skill metrics using
only the PCR implementation.

In Fig. 3a, one can observe the similarity of the SCEF
(PCR) forecasts themselves and the skill of these forecasts
(Fig. 3b) when using the two different validation cases. In the
end, it is desirable to produce cross-validated forecasts over a
period greater than the 20-yr period 2000/01–2019/20 (which
is illustrated in Fig. 2). That way, we can compare skill over a
longer period of record like NMME’s, for example, which is
1982/83–2019/20. Given the relatively small sample size of the
NCEP–NCAR reanalysis dataset (72 cool seasons or sam-
ples), though, it is not reasonable by default to expect a good
fit of our model parameters if we attempt to perform a split-
sample test with a validation period equal to NMME’s period
of record. In that case, we would use the calibration period
1948/49–1981/82 to fit the model and we would validate over

the period 1982/83–2019/20. Therefore, we needed to rely on
a different cross-validation scheme that allows us 1) to have
longer periods of calibration data for more robust model fit-
ting and 2) to compare the forecasts over a longer period of
record. We used 10-fold cross-validation to overcome that
challenge. However, prior to simply comparing the skill of the
10-fold cross-validated SCEF model with NMME over a lon-
ger period, we want to be confident that the 10-fold case is
not overfitting our model in such a way as to inflate our fore-
cast skill with respect to the more robust split-sample test.
Figure 3a shows that we do not have any systematic bias in
the forecasts themselves between the two cross-validation
cases, while Fig. 3b then shows that the 10-fold case is not
overestimating or inflating the forecast skill with respect to
the split-sample case (i.e., the scatter is well distributed about
unity in Fig. 3b). This now gives us the necessary confidence
to move forward and compare the forecast skills of the
10-fold case of the SCEF model with those of NMME for the
longer period of record 1982/83–2019/20.

Figure 4 compares the anomaly correlation forecast skill of
the NMME model with that of the SCEF model over the lon-
ger period of record 1982/83–2019/20. The CONUS-average
anomaly correlation for the SCEF model is 0.358, while for
NMME it is 0.271. Statistically significant forecast skill is
observed for 52% and 77% of the basins across CONUS for
NMME and SCEF, respectively. For the western United
States, west of 1008W, 63% and 94% of basins have statisti-
cally significant forecast skill.

The reduction in RMSE with respect to climatology, for the
NMME and SCEF forecasts, over the longer period of record,
1982/83–2019/20, is shown in Fig. 5. RMSE is calculated using
standardized forecasts and observations. First, we calculate
these standardized forecasts and observations using 10-fold
cross validation. For example, the Z scores (i.e., standard
deviations from the mean) are calculated, at each HUC, for

FIG. 3. Similarity between the forecasts and the anomaly correlations over the same period of record, 2000/01–2019/20,
using the split-sample and 10-fold cross-validation cases: (a) The standardized forecasts, for all HUCs, using the split-
sample (x axis) vs the 10-fold (y axis) cross-validation cases. (b) Comparison of the anomaly correlations between the
split-sample (x axis) and the 10-fold (y axis) cross-validation cases.
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2016/17–2019/20 using the mean and standard deviations cal-
culated over the period 1982/83–2015/16. Then, prior to calcu-
lating RMSE, we obtain a constant scaling factor that we
apply to the forecasts. This scaling factor is optimized to pro-
vide the greatest reduction in RMSE for the SCEF model in
the calibration period 1948/49–1981/82. The scaling factor
for the SCEF model forecasts was 0.40. It should be noted
that this scaling factor is robust and the same value is
obtained if we had optimized in-sample over the validation
period 1982/83–2019/20. Similarly, we optimized the scaling
factor for NMME. However, we cannot calculate an out-of-
sample scaling factor for NMME and simply optimized this
value in-sample over the validation period 1982/83–2019/20.
NMME’s scaling factor was 0.30. We then multiply all of the
SCEF and NMME standardized forecasts, at all HUCs, in the
validation period by 0.40 and 0.30, respectively. The reduc-
tions in RMSE are subsequently calculated using these scaled
standardized forecasts. For the NMME forecasts over the
period 1982/83–2019/20, there is a CONUS-average reduction
in RMSE of 3.2% with respect to climatology. In contrast, the
SCEF forecasts provide a CONUS-average reduction of 5.7%
with respect to climatology over the same period. The SCEF

model forecast error reductions again show a more dramatic
improvement across the West. In Fig. 5c, we can see that both
models are capable of providing better forecasts in certain
HUCs than the other model, while the SCEF model generally
shows greater reductions (i.e., more of the scatter points are
situated farther to the right of unity than scatter points situ-
ated to the left).

Figure 6 shows the scatter points of the standardized fore-
casts versus observations, for all HUCs simultaneously. The
relationship between NMME standardized forecasts and the
standardized observations over the longer period of record,
1982/83–2019/20, are shown in Fig. 6a. The standardized fore-
casts of the SCEF model versus standardized observations
over the same period are shown in Fig. 6b. The CONUS-wide
percent reduction in RMSE with respect to climatology and
the CONUS-wide anomaly correlations can be seen in the
upper left of the different subplots of Fig. 6. Similarly to the
CONUS-averaged results, the CONUS-wide SCEF model
forecast skill clearly outperforms NMME. The forecasts of
the SCEF and the NMME models respectively capture 12.0%
and 7.2% of the total CONUS-wide standardized observed
variance over the period 1982/83–2019/20. Likewise, the cool-

FIG. 5. (a),(b) The percentage reductions in RMSE with respect to climatology. Positive values indicate forecasts
that are a positive reduction, or forecasts that perform better than climatology. The CONUS-average RMSE percent-
age reduction is given in the bottom right of (a) and (b). (c) The percentage reductions in RMSE, at each HUC, of
the SCEF model vs NMME.

FIG. 4. Anomaly correlation skill of the forecasts for the 38-yr period between 1982/83 and 2019/20.
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season SCEF forecast skill over the more recent period 2000/
01–2019/20 shows an even greater improvement with respect
to NMME (Figs. 6c,d). Not shown are the ECMWF CONUS-
wide results for this shorter period; ECMWF has an anomaly
correlation of 0.202 with a reduction in RMSE of 2.2%. Over
this more recent period 2000/01–2019/20, the SCEF, NMME,
and ECMWF-SEAS5 models respectively capture 11.8%,
4.0%, and 4.1% of the total CONUS-wide standardized
observed variance. Figures 6e and 6f compare the standard-
ized forecasts of the SCEF and NMME models for the first
18 years of the record (i.e., 1982/83–1999/2000). For this ear-
lier period, we observe very similar forecast skill in the two
models. It should be noted that the scales of the x and y axes
in Fig. 6 are different; the forecast extremes are not nearly as
extreme as some of the observed values.

Figure 7 shows the 10-fold cross-validated anomaly correla-
tion skill of each of the models that contribute to SCEF. Each
model contributes skill in different regions. The CONUS-
average skill of the SLP and UWNDmodels generally outper-
form those of the CLSST and VWND models. Although,
importantly, the CLSST model is observed to pick up on skill
in the central (north to south) region of the West. This is due
to the long-lead statistical relationship between Niño-3.4 and
precipitation (Switanek et al. 2020). What is obvious, when

comparing with Fig. 4, is that the cross-validated weighted
ensemble-mean forecasts of the SCEF clearly outperform any
of the individual models.

The average set of weights [Eq. (12)] applied to each of
the four models can be seen in Fig. 8. Since the weights
vary to some degree with respect to the chosen calibration
period, the values illustrated in Fig. 8 are calculated to be
the averages of the weights across each of the 10 folds. As
one might expect, the geographic distribution of weights
aligns very closely with the cross-validated skill of the indi-
vidual models from Fig. 7.

6. Discussion

In contrast to the NMME and ECMWF-SEAS5 models,
the SCEF model is shown to produce better cool-season fore-
cast skill across much of the contiguous United States, with
particular improvements across the West. As a result, it is
worth providing some insight as to why that is. We find that
much of the skill improvement realized by the SCEF can be
attributed to some key differences in model infrastructure.

First, there is a lagged SST statistical response that the
SCEF model picks up on. This is done through the CLSST
modeling component of the SCEF framework. The SCEF

FIG. 6. Standardized forecasts plotted against standardized observations for all HUCs simultaneously, showing the (a),(c),(e) NMME
and (b),(d),(f) SCEF standardized forecasts along the x axis and the standardized observations on the y axis. The columns show the impact
of different validation periods on the forecast skill. The CONUS-wide percentage reduction in RMSE with respect to climatology and the
CONUS-wide anomaly correlation values are shown in the upper left of each panel.
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model has an infrastructure that can readily utilize predictors
from any lead time. For each region or basin, the SCEF model
finds the best predictors from different forecast lead times.
For example, the CLSST forecasts, and hence the SCEF, for
the northern California region weigh the Niño-3.4 predictor
more heavily from 1 year prior than from 1 month prior. This
is because the statistical relationship between Niño-3.4 and
cool-season precipitation in northern California is stronger at
a greater lead time such as 13 months prior. Figure 9 can help
us gain some insight as to why that is. In Fig. 9a, we observe
the concurrent (November–March) correlation, over the
1901/02–2019/20 period, between the detrended SST field and
northern California precipitation. Within the purple box, we
observe that conditions are most favorable to having greater
than average cool-season precipitation in northern California
when there are anomalously warm conditions south of 308N

and centered between 2108 and 2408E, while simultaneously
there are anomalously cool conditions north of 308N and
centered between 2008 and 2308E. Similarly, with inverse
anomalous conditions, one can expect less than normal pre-
cipitation, on average. Figure 9b shows the composite differ-
ence between concurrent cool-season SSTs conditioned upon
El Niño and La Niña events that occurred 13 months prior to
the October forecast date. The El Niño and La Niña events
were chosen at a threshold so as to have these events make
up one-third of the total sample size. We used a threshold
where an El Niño or La Niña event was chosen when the stan-
dardized anomaly was greater than 0.92. This threshold yields
40 events over the period 1901/02–2019/20. So, for example,
we find an El Niño event in September 1997, then the SST
field in our concurrent period November 1998–March 1999
will be used to compute our El Niño composite. We find all El

FIG. 7. The skill of the individual models, using 10-fold cross validation, over the period 1982/83–2019/20.

FIG. 8. Model weights at each HUC established over the calibration period.
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Niño and La Niña events from 13 months prior to our forecast
and calculate our composites of the SSTs that follow more
than 1 year later in the concurrent cool-season period. Simi-
larly, Fig. 9c shows the composite difference of the SSTs con-
ditioned on El Niño and La Niña events that occurred
1 month prior to our October forecast date. In Fig. 9d, we can
observe the composite differences in Fig. 9b plotted against
the correlation coefficients from Fig. 9a for the grid cells that
fall within the region outlined by the purple box. And simi-
larly, Fig. 9e plots the composite differences in Fig. 9c plotted
against the correlation coefficients from Fig. 9a. One can
clearly see by the correlations in Figs. 9d and 9e that the
development of concurrent SSTs, which are more/less favor-
able to increased/decreased northern California precipitation,
occur more frequently when conditioned upon El Niño/La
Niña events with a 13-month lead time (Fig. 9b) than upon
events with a 1-month lead time (Fig. 9c).

In Fig. 10, we directly compare the Niño-3.4 index itself, at
these different lead times, with cool-season precipitation in
northern California. Figures 10a and 10b show the Niño-3.4
index plotted against cool-season precipitation in northern
California at 13- and 1-month lead times, respectively. These
subplots are for all years (1901/02–2019/20), and we observe
greater correlation at the longer lead time. Figures 10c and 10d

show the cool-season precipitation accumulations that occur
when conditioned on the ENSO events that we previously
defined for Fig. 9. For both lead times, there is an increase
in correlation when only considering the stronger ENSO
events, and their statistical significance increases as well
(i.e., p values decrease) even after accounting for the change
in sample size. This can be thought of as a forecast of oppor-
tunity, or times in which we can expect greater forecast skill.
Figures 9e and 9f show the empirical cumulative distribution
functions of the cool-season precipitation accumulations
conditioned on these prior ENSO events from 13 months
and 1 month, respectively. At these seasonal accumulation
time scales, the distributions are approximately Gaussian.
As a result, we use a Student’s t test to find that the mean
difference of the two distributions is statistically signifi-
cantly different when conditioned on El Niño and La Niña
events from 13 months prior, while we fail to reject the null
hypothesis for the precipitation conditioned upon events
from 1 month prior.

The second key difference between the SCEF model and
NMME or ECMWF-SEAS5 is the fact that the SCEF model
does not attempt to perform numerical weather prediction,
whereby an entire state system is advanced through a set of
equations governed by physical laws. The SCEF model, in its

FIG. 9. (a) The concurrent (November–March) correlation between the detrended SST field and northern
California precipitation. The composite difference between concurrent cool-season SSTs conditioned upon
El Niño and La Niña events that occurred (b) 13 months and (c) 1 month prior to the October forecast date.
(d) The composite differences in (b) plotted against the correlation coefficients from (a) for the grid cells that
fall within the region outlined by the purple box. (e) Similarly, the composite differences in (c) plotted against
the correlation coefficients from (a).
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current format, attempts to exploit and use statistical relation-
ships specifically geared toward predicting cool-season
CONUS precipitation. In Fig. 11a, we observe the correlation
between sea level pressure values in August–September
and the precipitation in the following cool-season in the
Puget Sound basin located in Washington State. Figure 11b
shows the correlation between sea level pressure values in

August–September and our predicted or forecast time series
for Puget Sound. Likewise, Fig. 11c shows the correlation
between u-component wind values in August–September and
the precipitation in the following cool-season in the South
Florida Basin, and Fig. 11d shows the correlation between
u-component wind values in August–September and our pre-
dicted or forecast time series for southern Florida. We can

FIG. 10. The Niño-3.4 index plotted against cool-season precipitation in northern California at (a) 13-month and (b) 1-month lead times
for all years. The cool-season precipitation accumulations that occur when conditioned on El Niño and La Niña events at (c) 13-month
and (d) 1-month lead times. The empirical cumulative distribution functions of the cool-season precipitation accumulations conditioned
on these prior ENSO events from (e) 13 months and (f) 1 month.

FIG. 11. (a) The correlation between the field of sea level pressure values in August–September and the precipita-
tion in the following cool season in the Puget Sound basin. (b) The correlation between sea level pressure values in
August–September and the predicted time series for Puget Sound. (c) The correlation between the field of August–
September u-component wind values and the following cool-season precipitation in southern Florida. (d) The correla-
tion between the August–September u-component wind values and the predicted time series for southern Florida.
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observe that the forecast time series is largely picking up on
the information from where the historical statistical relation-
ship was strongest. This can be seen by how similar Figs. 11b
and 11d look in comparison with Figs. 11a and 11c, respectively.
Keep in mind, however, that there is not a perfect overlap
between Figs. 11a and 11b (or Figs. 11c and 11d) because 1) we
are fitting and applying the SCEF model in data-reduced
space (i.e., we use the leading principal components of our
predictors and our predictands) and 2) we obtain our forecasts
through cross validation. A user of the SCEF model could
apply an approach such as what we have presented here to
empirically or statistically attribute the origin(s) of the fore-
casts for a particular basin or region.

7. Conclusions

This paper proposes a new statistical modeling framework,
which we have called the Statistical Climate Ensemble Fore-
cast model. The SCEF model is capable of producing more
skillful cool-season November–March precipitation forecasts
than either the NMME or the ECMWF-SEAS5 models.
These improvements in cool-season forecast skill were shown
for the validation periods 2000/01–2019/20 and 1982/83–2019/
20 using split validation and 10-fold cross validation, respec-
tively. In particular, the SCEF model most dramatically
improves forecast skill across the western United States.

As new observational measurements add to the length of
our historical records, more sophisticated empirical–statistical
algorithms (Rasouli et al. 2012; Leng and Hall 2020; Scheuerer
et al. 2020) have the capacity to yield further improvements to
forecast skill. Even with the simpler empirical–statistical tech-
niques implemented in this paper, however, we can provide
optimism for cool-season precipitation forecasts across the
West. The main contributions of this paper are summarized as
follows:

1) Using statistical predictors at long lead times of greater
than 6 months has the potential to improve forecasts
over relying solely on predictors at short lead times of
1–6 months.

2) Better forecasts can be achieved by prescreening the pre-
dictor data. Examples of this can include constraining the
spatial extent of our predictor field, in addition to reduc-
ing the dimensionality of our predictor and/or predictand
data by using fewer leading principal components than
our number of samples.

3) Increasing model complexity (NMME versus SCEF) does
not necessarily lead to added value.

Through our discussion concerning Figs. 9–11, we have pro-
vided greater insight into how the SCEF model is leveraging
certain information to achieve improved forecast skill. How-
ever, questions still remain, such as those raised by the results
of Fig. 6. What explains the skill-level discrepancy between
the SCEF model and NMME for the more recent period
2000/01–2019/20 and the prior period 1982/83–1999/2000? Is
this a data quality issue, where better observational and rean-
alysis data can lead to better forecasts? Can the difference in
skill be explained by something such as the magnitude of our

predictor data during the validation period (Newman and
Sardeshmukh 2017; Huang et al. 2021; Mariotti et al. 2020)?
What could explain periods of greater or lesser forecast
skill across the western United States? More effort and con-
tinued research are required to unravel some or all of these
pertinent questions.

Compounding the difficulties presented by climate change,
there has historically been limited forecast skill of cool-season
precipitation across the water-stressed western United States.
As a result, improving these forecasts can provide invaluable
decision-making assistance to water managers across the
West. Given the devastating drought currently consuming the
region in the summer of 2021, the West needs any and all
additional tools to help navigate its many natural resource
challenges.
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